Tracking capability of intermediate + thiner outer tracker

Y. Akiba, I. Nakagawa, R. Nouicer, Y. Yamaguchi, and G. Mitsuka

sPHENIX tracker meeting, June 17, 2016

Introduction and motivation

- We investigate how the silicon-strip intermediate tracker can improve the overall detector performance:
 - combination of the intermediate- and thiner outer-tracker [today's talk]
 - track recognition in a large pileup probability [before tracker review]
- Intermediate and thiner outer tracker combination aims at tracking capability requested by the sPHENIX science drivers by keeping the building cost as low as possible.

Tracker overview

Inner tracker

- one layer of VTX pixel with 100 % live area: R = 2.48 cm (because this study was done before submitting ALD charge.)

Intermediate tracker

- four layers of silicon-strip detectors: R = 6, 8, 10, 12 cm
- one strip corresponds to 80 μ m (ϕ) x 12 mm (z)
- one chip per one cell, so no strip ganging.

Outer tracker

- a chamber consisting of six pads/layers placed at R = 77.5, 79.0, 80.5, 82.0, 83.5, and 85.0 cm.

Simulation methodology

- sPHENIX Geant4 is used ("toy MC" is not used anywhere in this report.)
- Implementation of VTX pixel and silicon-strip sensors use the "cylinder geometry templates" in G4_Svtx.C.
- For a thiner outer tracker, I first tried to modify the TPC configuration, but finally I used the silicon-strip template with the strip width equivalent to the position resolution (here I assume 250 μ m) and strip length 1.2 cm (with no special reason).
- PHG4HoughTransform, not PHG4HoughTransformTPC, is used for track reconstruction.
- Currently a track must have hits in totally 11 layers from VTX pixel to the most outer layer in the outer tracker. Note that the track efficiency/purity is sensitive to this requirement.

Tracking performance

(PHG4 with 20,000 HIJING events at b < 4 fm)

Open circles: silicon option in pCDR

Filled circles: this option (VTXP+intermediate silicon+thiner outer)

5

Single upsilon

Single upsilon 1S/2S/3S with internal bremsstrahlung.

Y(1S,2S,3S) → e⁺e⁻

Upsilon embedded in central HIJING

Single upsilon 1S/2S/3S with internal bremsstrahlung embedded in central HIJING

Event display

Single upsilon forced to decay into e+e- at $\eta = 0$. |dz| < 0.5 cm corresponds to the strip size along z dir.

Event display

Single upsilon forced to decay into e+e- at $\eta = 0$. |dz| < 0.5 cm corresponds to the strip size along z dir.

Summary

- G4 simulations indicate that intermediate tracker (4points) + thiner outer tracker (6 points) combination works for upsilon measurements.
 - single upsilon: $\sigma(1S) = 94 +/- 2.0 \text{ MeV/c}$
 - single upsilon embed in central HIJING: $\sigma(1S) = 110 + /- 2.9 \text{ MeV/c}$.
- Need to study
 - an impact of this combination on jet physics
 - reduction of track ambiguity in a large pileup probability.

Backup

Event display

Impact parameter distribution

2D profile

